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Abstract 0 An analytical method that might eventually qualify as a
general quality control assay procedure for polypeptide drug forms
was described in the companion article to this paper. The detector is
visible range circular dichroism spectroscopy. Multivariate data analysis
reduced the spectral data to essentially four principal components (or
factors) that are characteristic of each analyte. The level of analytical
selectivity achieved among 51 analytes is very high. Using an
alternative factor analysis algorithm, the selectivity is even more
conveniently accomplished in the form of a 2-D cluster diagram
presentation that has the potential of being a prototypical predictive
in vitro model for correlating experimental data with structure−activity
or structure−function relationships. Clustering of the analytes is a
consequence not only of the chiral interactions associated with ligand
exchange in the immediate primary coordination sphere of the host
derivatizing reagent, but also of long-range intermolecular interactions
between the coordination architecture of the host and the chiral
polypeptides.

Introduction
Chirality is a common molecular property among natural

products and an important factor in determining the
efficacy of drug substances.1 For an enantiomeric pair the
isomer with proven clinical therapeutic value is called the
eutomer, the other the distomer. Possibilities exist that a
distomer can be toxic or mutagenic, making the assay of
both enantiomers an essential part of regulatory tests.
Measuring the chemical purity of an enantiomeric form is
done by conventional standardized methods. Accurate
measurement of the enantiomeric purity (EP) is a much
more difficult problem. How to measure EP’s quantitatively
and routinely has recently become a major concern for
manufacturing and regulatory agencies. The measurement
of EP, or the related quantity enantiomeric excess (EE),
expressed as a ratio of the two isomers, has now reached
the status of being a requirement imposed by the Food and
Drug Administration in new drug submissions.

Manufacturers have the option of choosing between
either the enantiomeric resolution of readily synthesized
racemic mixtures, or stereospecific syntheses.1 Resolutions
are typically long, demanding, and costly processes which
in the end invariably fail to achieve 100% EP. Chiral
chromatographic procedures significantly reduce the work
load and costs for enantiomeric resolutions,2,3 but separa-
tions that are complete are still not generally accomplished.
More and more often, stereospecific synthesis has become
the favored option. Since 100% EP is seldom achieved, both
procedures are perhaps better thought of as enantiomeric
enrichment processes. Monitoring the possible reduction
of EP during the shelf life of a drug substance through
racemization, especially if it is in solution or in suspension,
is an analytical add-on to protocols that are submitted for
approvals.

As a result, regulatory agencies are facing a rapidly
increasing work load with respect to certifying and ap-
proving analytical methods to measure not only chemical
purities but also EE (impurities) of chiral drug forms.4,5

There is also the issue of defining what are the acceptably
safe EE threshold levels below which a product is to be
rejected from either manufacture or distribution. To ease
the load, there is an urgent need for accurate and conve-
nient routine experimental procedures that will give
chemical and chiral impurity data, and preferably in an
automated way if at all possible.

The problem is immense and still expanding. Pharma-
ceutical and biotechnology industries are investing more
and more R&D resources into the production of chiral
substances. With the advent and continued momentum of
combinatorial chemistry,6-9 the number of potential new
chiral drug substances is increasing exponentially. No-
where, perhaps, are these numbers increasing faster than
in the area of peptide, peptidomimetic, and protein drug
forms. Identifying which real or virtual compounds are
worthy of further development is an exceptionally difficult
problem. Culling out the few new potential drug substances
by performing individual in vivo assays was not really an
option and led quickly to the development of mixture
assays.7-9

Viable alternatives, with the potential for automation,
are quantitative structure-activity relationship (QSAR)
screening algorithms that are based upon in vitro chro-
matographic or spectroscopic data of one kind or another.
Exploitation of QSAR models is done in two parts, calibra-
tion and prediction. In the first step, measured experimen-
tal data and therapeutic properties of known drug forms
are mathematically correlated to derive a calibration
model. The calibration model is in turn exploited to predict
the therapeutic potential of a new drug form. The predic-
tion is based entirely on the measured experimental data,
e.g., retention times or absorbance, for each new substance.
The broader the therapeutic range represented in the
calibration, the better the prediction model. These particu-
lar experimental methods, however, do not always address
the question of how important molecular chirality is, in the
therapeutic function of a drug.

The motivation for this study and previous related
studies on peptides and proteins10-13 was to address the
lack of emphasis that is given to causal relationships
between chirality and function, especially since molecular
chirality is so commonplace among natural and synthetic
drug substances. Protein receptor sites are chiral. How the
chirality of a receptor kinetically reconfigures itself to
accommodate the chirality of the drug molecule, and vice
versa, is a factor in the discrimination between eutomers
and distomers. That steric selectivity has been exploited,
almost without recognition, in the development of a myriad
of clinical assays that are based upon analytical specificities
attributed to monoclonal and polyclonal antibodies and
their interactions with antigens. Despite the importance
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of the chirality recognition, at no time has a test been based
upon chirality detection. Antibodies have been elevated to
the exalted rank of Analyte Specific Reagents (ASR). That
same high selectivity, however, is a natural deterrent to
the derivation of broad based or generally predictive QSAR
models.

Direct spectroscopic methods are a more attractive option
over chromatography because of their comparative simplic-
ity of operation and consistent reproducibility in the
recalibration of standards, etc. Mass spectrometry is selec-
tive but not with respect to chirality differentiation. Detec-
tors that measure absorbance and fluorescence in the
visible-UV range are notorious for their lack of analytical
selectivity, but can be improved upon by using derivatiza-
tion reactions, multivariate analyses methods, such as
principal component analysis (PCA), factor analysis, and
artificial neural networking in data handling,14 or experi-
mentally by introducing time as an added analytical
variable.

Spectroscopic methods with the power to detect molec-
ular chiralities are circular dichroism (CD) and optical
rotatory dispersion (ORD). In the specialized area of
screening peptides and proteins, however, the vast majority
of CD investigative work is done on data from the UV
range.15 The purposes there are to obtain predictive
information that can be used to resolve the question of 3-D
structural properties of proteins in solution, apportion
solution structures between helix and sheet forms, and
investigate the kinetics and thermodynamics of folding-
unfolding mechanisms, etc. CD bands in the UV are broad
and without discrete features. Like absorbance, their
potential for establishing QSAR models is limited.

In a series of recent articles, visible range CD spectral
data were used to selectively differentiate among di- and
tripeptides,10,11 insulins,12 and neuropeptides.13 Mathemati-
cal algorithms were derived with which to determine their
chemical and enantiomeric purities.12,13 The absorbance
property required for CD to occur in the visible range, was
provided by first binding the peptides to Cu(II) ion in pH
13 aqueous solution. Visible absorbance spectra of Cu(II)
complexes are comprised of three electronic transitions16

all of which are CD-active. For the completed studies,
peptides were either bound directly to the copper ion10,11

or displaced an auxiliary ligand,12,13 e.g., D-histidine. Major
accomplishments from these articles that are of relevance
to the goals of this one are the ability to discriminate
between human and porcine insulins12 (two 51 amino acid
residue proteins whose sequences differ in the identity of
one acid at the B30 terminal amino acid only) and between
human insulin and the human LysPro variant form in
which the order of the B29 L-lysine and B30 L-proline are
reversed, and to achieve a level of quantitative analytical
selectivity that approaches specificity among 51 peptides.13

The specific objective of this article was to derive a
cluster correlation diagram between visible range CD data
on one hand and molecular stuctures, and their corre-
sponding clinical therapeutic functions, on the other.
Success would mean we will have a prototypical in vivo
predictive QSAR model of some general applicability. CD
spectral data are taken from the previous companion
article.13 Only tripeptides and longer oligopeptides are
included to test the general practicality of a clustering
algorithm. Special mention is given to the subgroup of 19
neuropeptides, classified by their particular clinical func-
tional actions.

Experimental Section
ChemicalssThirty-five oligo-and polypeptides used for the

study were the tripeptides GGA, GGG, GGH, GGI, GGL, GGF,
GHG, LGG, and YGG; the higher oligoglycines GGGG, GGGGG,

and GGG-GGG; the enkephalins DSLET, DTLET, DADLE, DAGO,
DALDA amide, DPDPE amide, Met5-enkephalin, Leu5-enkephalin,
Leu5-enkephalin amide, (D)-Ala2-Leu5-enkephalin amide, and â-en-
dorphin; the Dynorphins A (1-9), A (1-11), A (1-13), A (1-13)
amide and B (1-13); and the miscellaneous CTAP amide, ICI 174,-
864, PLO 17 amide, and human, porcine, Lyspro, and bovine
insulins. Amino acid sequences are included in the footnote to
Table 1.

Commercial sources for the oligopeptides and insulins were
listed previously.13 Reagent grade D-histidine, reported to have
an EP better than 99.8%, was obtained from Sigma Chemical Co.
Reagent grade CuSO4‚5H2O was obtained from Fisher Scientific.

Solution PreparationssThese are described in greater detail
in the prior companion article on the 51 peptide and protein
forms.12,13 Working solutions for the assays were prepared by
diluting aliquots of Cu(II)-D-histidine stock solutions by a factor
of 10 with 0.10 M NaOH such that the final composition was 2.0
mM in Cu(II) ion, 8.0 mM in D-histidine, and 3.0 mM in KI added
as stabilizer, in 0.1 M base. To make future quality control (QC)
procedures more amenable to automation, we chose to add equal
masses of the analytes (10 mg) to the aliquot of stock prior to its
dilution rather than use equal concentrations. From the range of
molar masses of the neuropeptides, the actual analyte concentra-
tions in the working solutions varied from 0.2 to 1.20 mM. All are
intentionally lower than the total copper ion concentration and
not enough to exchange completely with the D-histidine ligand.
With modern CD instrumentation, the mass of analyte can be
reduced 10-100 fold.

MeasurementssCD spectra were measured using a Jasco
500-A automatic recording spectropolarimeter coupled to an IBM-
compatible PC through a Jasco IF-500 II serial interface and data
processing software. Experimental parameters were wavelength
range 400-700 nm, sensitivity 100 mdeg/cm, time constant 0.25
s, scan rate 200 nm/min, path length 5.0 cm, temperature ambient.
With 2 nm spectral resolution, the full measured spectrum consists
of 1500 data points.

Calibrating the day to day reproduciblity of the system was done
by measuring the CD spectrum for the Cu(II)-D-histidine refer-
ence working solution. Statistical data used to determine spectral
reproducibilities were based on the standard deviations (SD) for
the maximum ellipticities measured at the wavelengths 487 and
682 nm. The SD values were 7.42 ( 0.07 mdeg and -214 ( 0.60
mdeg, respectively, within and between stocks.10,11

Results and Discussion
The assay works on the premise that chiral ligand

exchange of the polypeptides for D-histidine, complexed to
Cu(II) ion in strong aqueous base solution, will induce a
change from the CD spectrum for the host that is charac-
teristic of the peptide analyte. The host metal complex
serves as a CD-inducing and color-derivatizing agent for
the neuropeptides which otherwise would be CD transpar-
ent in the visible range. Spectra for the products,13 uncor-
rected for the host spectrum, are the bases for subsequent
mathematical correlations.

If there is any truth to the concept that the CD spectra
for the mixed complexes correlate with molecular, and
therefore therapeutic, function, there should be strong
spectral similarities within specific groups and obvious
dissimilarities among groups. In other words the focus is
on proving a pattern recognition of polypeptides by type.
With this thought in mind, we can dispense with the
conventional practice of measuring metal-ligand stoichi-
ometries which should be similar within each subset, and
dispense with the need to measure formation constants,
expecting the variations in these values within a group to
vary very little. Therefore, provided the specified procedure
for the assay is defined and followed in every detail, analyte
recognition and the measured accuracy in their determina-
tions will be considerably improved over univariate (one
wavelength) determinations.

The mathematical basis for achieving the analytical
selectivity claimed in the previous article13 was data
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reduction of the 1500 data points in the CD spectra for each
analyte, taken separately, to twelve factors (3 eigenvalues
and 9 eigenvectors) using PCA done on Spinning Plot
data.17 Spinning Plots are created by plotting wavelength,
CD spectral data for the Cu(II)-D-histidine host complex,
and the Cu(II)-(D-histidine-peptide) mixed complexes on
the x, y, and z coordinate axes, respectively. Calculations
are described in detail in the prior article.13 Factors
showing the most sensitivity to the identities of the
analytes are the eigenvectors. The real analytical value of
the tabulated data is the quantitative nature of the
chemical and EP assays that can be accomplished using
PCA data vs concentration correlations. Potential correla-
tions of principal components with molecular structures are
difficult to find when data are in tabular form.

PCA and Clustering ModelsThe model was developed
using only the spectral data for the tripeptides and higher
oligomers. Dipeptides were excluded because they lack the
3-D rotational conformational structures that are common
to longer peptides.

In clustering, the strategy is to base correlations upon
how well spectral patterns align with molecular “types” in
a graphical manner. The major departure from Spinning
Plot data reduction algorithm is that the spectral data for
all 35 analytes are treated collectively. What follows is a
description of the genesis of a possible calibration model.
Spectral data for new analytes are required before the
relative success of the model in making predictions can be
tested.

To make modeling calculations more managable for a
desktop computer, the original 1500 data points were
reduced in number to 31 by choosing values at 10 nm
intervals. The first step was to group the (35 × 31) CD data
sets through a (correlation-of-Y variables) calculation, that
expresses the relative strengths of successive pairwise
correlations of CD signals in the form of a square matrix.
PCA was then used to reduce the dimensionality of the
correlation-of-Y’s matrix to just six factors or principal
components (PC’s), Table 1. These six factors account for
99.93% of the total variations among all of the Y variables
in all 35 individual spectra. The first factor, PC1, has the
maximum variation. The second factor, PC2, is orthogonal
to the first and has the next greatest variation, and so on
through all six factors.

Clustering is a technique of grouping together rows of
PC’s that share similar values across a number of variables.
The hierarchical clustering option was used here. In this
option, clustering starts with each point being its own
“cluster”. Through a series of iterative steps the two closest
clusters are successively combined, by Ward’s method, until
ultimately all points are grouped as a single cluster.
Between the extremes of 1 and 35 clusters there is an
optimum number on which to base the model. As a rule of
thumb the number of clusters would not exceed the number
of “types” of analytes, assuming that that prior knowledge
is available. Selection of the optimum cluster condition is
linked to the relative magnitudes of the proportional
changes between successive PC values. For this data set,

Table 1sPrincipal Component (PC) Values and Cluster Assignments Derived from the PCA Calculation Made from the Correlation of Y-Matrix for
Tripeptides, Oligopeptides, and Insulinsa

peptide PC1 PC2 PC3 PC4 PC5 PC6 cluster

GGH 1.90754 1.07084 −5.80304 0.56910 0.76218 0.21884 1
GGI −3.33190 0.93815 −1.31367 0.58205 0.24248 −0.20411 2
GGL −2.48178 1.54899 −0.83902 0.41809 0.19503 0.00979 2
GGF −7.02666 2.48361 −3.42084 1.26270 0.26464 −0.10426 2
GGA −3.30146 3.77231 −1.58899 0.32102 0.18140 −0.05297 2
LGG −1.08595 4.62576 0.36281 −0.11674 −0.31355 −0.04903 3
YGG 2.21496 5.92887 2.47355 0.39291 0.07784 −0.13505 3
GHG 0.71513 5.73447 2.83448 −1.50678 0.67706 0.58728 3
GGG −1.00748 4.63183 −0.13142 −0.38407 −0.38924 0.05335 3
GGGG −0.98249 5.10671 −0.20555 −0.41400 −0.41839 0.05011 3
GGGGG −0.99244 5.08708 −0.19114 −0.44882 −0.43975 0.02403 3
G6 −0.77889 3.13769 0.20912 −0.37229 −0.29460 0.05897 3
DSLET 5.61386 −1.78747 0.05173 −0.40400 −0.03030 −0.07857 5
DTLET 7.31482 −1.43674 0.18100 −0.71373 0.16854 −0.28908 5
DADLE 6.56303 −1.40095 −0.08242 −0.55754 0.03430 0.08077 5
DAGO 3.42481 2.26752 3.32135 1.53333 0.39364 −0.18805 3
DynA9 −2.14370 −2.52980 1.56920 0.06199 −0.31105 −0.06093 4
DynA11 −1.76459 −1.76269 2.87524 0.67279 −0.10279 0.16660 4
DynA13 −1.68912 −2.25739 2.67589 0.60244 −0.03417 0.16794 4
DynAA13 −3.56666 −1.56817 2.52575 0.30886 −0.11321 0.02043 4
Met-enk −0.23515 −0.57906 −0.51375 0.22497 0.00360 −0.01722 1
DynB13 −0.85486 −2.64485 1.81267 −0.06927 −0.33628 0.04186 4
â-endorph −1.99505 −0.50226 2.52819 0.28876 0.38610 −0.01400 4
DALDA 2.65449 −4.29649 −2.52405 2.10245 −0.56252 0.57465 1
CTAP −8.64881 −4.24805 −3.13553 −2.15925 −0.19259 0.10251 6
DPDPE 8.93870 −0.60145 −2.26189 −0.70663 0.34742 −0.03321 5
ICI174 0.05242 −5.16070 1.98254 −0.22740 0.19753 −0.04955 4
PLO17 0.09633 −5.23027 1.97495 −0.21865 0.22239 −0.00471 4
R-Leu-enk 7.96527 −1.32821 −1.88627 0.03077 −0.34296 0.02164 5
L-enkeph 2.32657 0.48518 −1.23225 0.05665 −0.48166 −0.18311 1
Lenkamid 2.83518 0.95343 −0.72967 −0.17806 −0.45585 −0.21976 1
human ins −2.64882 −2.89625 −0.41242 −0.34787 0.11478 −0.12309 4
porcine −2.72926 −2.93333 −0.46651 −0.35625 0.14004 −0.10869 4
lyspro ins −2.87639 −2.22205 −0.51801 −0.00418 0.23594 −0.04509 4
bovine ins −2.48166 −2.38724 −0.02859 −0.23897 0.17400 −0.1182 4

a Key to Structures reading from amine end. Lower case letters are D-enantiomer forms, (asterisks indicate ring structures): DSLET (YsGFLT); DTLET (YtGFLT);
DADLE (YaGFL); DAGO (YaG(N-Me)FG); DALDA (YrFK amide); DPDPE (Ype*GFpe*); CTAP (fC*Y-wRTP*eT amide); DynorphinA (1−9) (YGGFLRRIR); DynorphinA
(1−11) (YGGFLRRIRPK); DynorphinA (1−13) (YGGFLRRIRPKLK); Dynorphin B (1−13) (YGGFLRRQFKVVT); b-endorphin (YGGFMTSEKSQTPLVTLFKNAIKNAYKKGE);
Met5-enkephalin (YGGF(N-Me)M); Leu5-enkephalin (YGGFL); (D)-alanine-Leu5-enkephalin (YaGFL); ICI 174,864 (N,N-diallyl YAiAiFL);
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the optimum number of clusters, or types, is 6; the
tripeptides, oligoglycinates, dynorphins, enkephalins, in-
sulins, and a miscellaneous group composed of the struc-
turally unrelated CTAP, ICI 174,864, and PLO 17.

Figure 1 is a presentation of two 2-D cluster diagrams
prepared by plotting different pairs of PC values, PC1 vs
PC2 in Figure 1a, and PC3 vs PC1 in Figure 1b. The
relationship between the two figures is that the projection
of the lower diagram is from a direction that is orthogonal
to the projection for the upper diagram. Together they
represent two 2-D perspectives of a 3-D figure. Figure 1a
shows the excellent segregation of the data points over five
distinct cluster areas that encompass multiple points, and
one “area” that is but a single point, i.e., CTAP. The four
insulins and the Dynorphins appear to occupy a single
cluster in the 2-D space of Figure 1a, but on viewing the
same diagram from an orthogonal direction, Figure 1b, the
types are clearly separated in the third dimension. Future
studies should be able to exploit 3-D clustering option in a
more direct manner for even greater discriminations.

The range in values for all PC’s is very wide which
enables good spatial separation of the clusters. Limits on
the range of PC1 values are set by the Cys-Pen and Pen-
Pen disulfide linked ring peptides, CTAP and DPDPE,
which produce the greatest changes in the CD spectral data
from that of the host complex.13 Two other structural
features of CTAP make it unique. It is the only peptide in
the pool with an aromatic substituent on the amine
terminus, and that residue is also in a D-enantiomeric form.

Neuropeptides SubgroupsClustering of the 19 neu-
ropeptides subgroup is shown separately from the tripep-
tides and insulins data in Figure 2. All except CTAP and
ICI 174,864 have a Y-residue at the amine terminus. Data
points on the PC1 vs PC2 plot are segregated over three
distinct areas, plus a few individually distinct locations.
The next question is whether these areas correlate with
different protein receptor selectivities and affinities.

Three known peptide neuroreceptors, µ, δ, and κ, have
been identified in the literature.18,19 It has been proposed,

but not generally agreed upon, that there is duality in the
structures of potential µ and δ receptors. Neuropeptide
drug forms have special affinity for one or another of the
receptors. Dynorphins, for example, are structurally dis-
posed to bind to κ receptors. Some drugs are reported to
show multiplicity by binding to more than one receptor.

Beginning with the cluster outliers, CTAP is a confirmed
µ-selective antagonist. DALDA on the other hand is
considered to be the most selective µ-agonist known. Their
relative locations are consistent with the diversity in their
affinities. Distinction between PLO 17 and ICI 174,864 (a
µ-agonist and a δ-selective antagonist, respectively), how-
ever, cannot be made since the spectral evidence is that
they do not participate in ligand exchange. The host
Cu(II)-D-histidine complex, therefore, would occupy the
same coordinate position and be a natural reference point
against which to “measure” relative receptor selectivities
and affinities.

Compounds 1-5 in Figure 1 are the designer D2-
enantiomer-enkephalin analogues, DTLET, DSLET, DA-
DLE, a2-Leu5-enkephalin, and DPDPE, respectively. These
are recognized δ-receptor drugs. Structurally DADLE is the
enantiomer of a2-Leu5-enkephalin because of the inversion
of the chirality at the acid terminus. The chirality change
appears to have little effect on their proximity in the cluster
which might have been expected since it is located so far
from the amine terminus which is the primary point
contact between the ligand and the host metal complex.
DALDA fits the description of a D2-enantiomerically sub-
stituted enkephalin, yet it lies outside the “δ-receptor
cluster”. The result is consistent with the fact that DALDA
favors binding to a µ-neuroreceptor (vide supra). Its
absence from the “δ-receptor cluster” might be related to
its being the only tetramer in the class.

The two natural Leu5-enkephalins 9 and 10, in which
all residues are L-enantiomer forms, also show a preference
for δ-receptors.18,19 Their coordinates, however, are quite
remote from the designer D2-enkephalins “δ-receptor clus-
ter”. Effects of enantiomeric substitutions at amino acid

Figure 1s(a) Correlation of PC1 vs PC2 (Table 1) derived from the PCA of
the correlation of Y matrix for the 35 peptides used for the model. Individual
clusters are associated with (+) GGX tripeptides; (x) oligoglycinates and non-
GGX tripeptides; (b) enkephalins; (≤) Dynorphins; (9) insulins (black); and
(+) D2-modified enkephalins. (b) Correlation of PC3 vs PC2 from the same
source. The perspective is from a direction that is at right angles to the
projection in part a. The same markers are used to designate the peptides by
type. The special reason for part b is to demonstrate that the Dynorphins and
the insulins are separable in the third dimension.

Figure 2sRepeat of the correlation of Figure 1a drawn exclusively for the 19
neuropeptides only. Cluster outliers are identified by name. Coordinates for
the host D-histidine complex would correspond with the coordinates for PLO
17 and ICI 174,864. The δ-receptor cluster consists of (1) DTLET; (2) DSLET;
(3) DADLE; (4) a2-Leu5-enkephalin; and (5) DPDPE. The µ-receptor cluster
consists of (6) DAGO; (7) Met5-enkephalin; and â-endorphin. The alternate
δ-receptor cluster is comprised of (9) Leu5-enkephalin and (10) Leu5-enkephalin
amide. The κ-cluster of the Dynorphins consists of (11) B (1−13); (12) A
(1−13); (13) A (1−9); (14) A (1−11); and (15) A (1−13) amide.
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terminus residues may be a factor in proposing that there
is structure multiplicity among neuroreceptors and among
agonists.

DAGO (6) is yet another designer D2-substituted en-
kephalin whose location is remote from the “δ-receptor
cluster”. Its spectral properties and PC coordinates place
it in an entirely different cluster with Met5-enkephalin (8)
and â-endorphin (7) which are µ-receptors. DAGO is also
classified as a µ-receptor agonist.18,19 The locations of the
Met5 analogue, â-endorphin, and DAGO together define the
“µ-receptor cluster” space. Structurally what DAGO and
Met5-enkephalin have in common is an N-Me substituent
on the third and fourth residues, respectively. The sub-
stituent lies outside the plane of the primary tetragonal
coordination sphere of the Cu(II) ion complex and as such
adds a new chirality dimension to the ligand-ligand
interactions. The observation that DAGO is a confirmed
µ-receptor agonist and associates itself in space with two
other µ-receptors, while its structure would suggest oth-
erwise, is perhaps the most compelling reason for believing
that a calibration model has been identified that could be
the genesis of a QSAR model for predicting the receptor
selectivities of new peptide drug forms.

As a general rule, Dynorphins bind to the κ-receptor.18,19

All five included here form a tight single “κ-receptor cluster”
which we suspect is related to their having identical initial
sequences and a diminished outer-sphere involvement with
the first coordination sphere of the metal complex. In close
juxtaposition to the Dynorphins is the 30-residue â-endor-
phin which has the same sequence as the Dynorphins over
the first four residues. Areas where the clusters impinge
or intersect are conceivably indicators of possible duality
in receptor binding functions.

The preliminary calibration model has provided some
encouraging results. As more neuropeptides are added to
the data pool, the boundaries and the compositions of the
clusters will necessarily change. A much larger data pool
is required before the predictive capabilities of the model
can be critically and confidently tested.

Summary
An idea for a potential QSAR model for peptide drug

substances is described. The model is based upon visible
range CD data measured for a series of mixed Cu(II)-
(D-histidine-peptide) complexes. Spectral responses to the
ligand substitution reactions are a function of the identities
of the coordinating bases in the analyte ligands and of the
extended 3-D solution structure of the peptides. The model
differs from other QSAR models in that longer range
intermolecular forces that contribute to receptor-agonist
interactions are a tangible part of the model. The value of
the model as a predictive tool is still uncertain because the
number of objects is still very small. It is quickly and easily
expandable as other neuropeptides become available. The
focus here was on neuropeptides. Drugs whose pharmaco-
logical functions are different will, in all likelihood, be
treated as separate entities in cluster diagrams that are
specific to each category or type.
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